Comparative Study of Statistical background Modeling and Subtraction

نویسندگان

  • Mourad Moussa
  • Maha Hmila
  • Ali Douik
چکیده

Background subtraction methods are widely exploited for moving object detection in videos in many computer vision applications, such as traffic monitoring, human motion capture and video surveillance. The two most distinguishing and challenging aspects of such approaches in this application field are how to build correctly and efficiently the background model and how to prevent the false detection between; (1) moving background pixels and moving objects, (2) shadows pixel and moving objects. In this paper we present a new method for image segmentation using background subtraction. We propose an effective scheme for modelling and updating a background adaptively in dynamic scenes focus on statistical learning. We also introduce a method to detect sudden illumination changes and segment moving objects during these changes. Unlike the traditional color levels provided by RGB sensor and Gaussian distribution aren’t the best solution to overcome noted problem, for this reason we propose a recursive algorithm that contributes to select very significant color space. Experimental results show significant improvements in moving object detection in dynamic scenes such as waving tree leaves and sudden illumination change, and it has a much lower computational cost compared to Gaussian mixture model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Moving Objects Tracking Using Statistical Models

Object detection plays an important role in successfulness of a wide range of applications that involve images as input data. In this paper we have presented a new approach for background modeling by nonconsecutive frames differencing. Direction and velocity of moving objects have been extracted in order to get an appropriate sequence of frames to perform frame subtraction. Stationary parts of ...

متن کامل

Moving Objects Tracking Using Statistical Models

Object detection plays an important role in successfulness of a wide range of applications that involve images as input data. In this paper we have presented a new approach for background modeling by nonconsecutive frames differencing. Direction and velocity of moving objects have been extracted in order to get an appropriate sequence of frames to perform frame subtraction. Stationary parts of ...

متن کامل

Detecting and counting vehicles using adaptive background subtraction and morphological operators in real time systems

vehicle detection and classification of vehicles play an important role in decision making for the purpose of traffic control and management.this paper presents novel approach of automating detecting and counting vehicles for traffic monitoring through the usage of background subtraction and morphological operators. We present adaptive background subtraction that is compatible with weather and ...

متن کامل

Comparative study of background subtraction algorithms

In this paper, we present a comparative study of several state of the art background subtraction methods. Approaches ranging from simple background subtraction with global thresholding to more sophisticated statistical methods have been implemented and tested on different videos with ground truth. The goal of this study is to provide a solid analytic ground to underscore the strengths and weakn...

متن کامل

An Advanced Moving Object Detection Using K-Means Clustering Algorithm

In this paper, we present a comparative study of several state of the art background subtraction methods. Approaches ranging from simple background subtraction with global thresholding to more sophisticated statistical methods have been implemented and tested on different videos with ground truth. The goal of this study is to provide a solid analytic ground to underscore the strengths and weakn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017